A Qualitative Characterisation of Causal Independence Models Using Boolean Polynomials

نویسندگان

  • Marcel van Gerven
  • Peter J. F. Lucas
  • Theo P. van der Weide
چکیده

Causal independence models offer a high level starting point for the design of Bayesian networks but are not maximally exploited as their behaviour is often unclear. One approach is to employ qualitative probabilistic network theory in order to derive a qualitative characterisation of causal independence models. In this paper we exploit polynomial forms of Boolean functions to systematically analyse causal independence models, giving rise to the notion of a polynomial causal independence model. The advantage of the approach is that it allows understanding qualitative probabilistic behaviour in terms of algebraic structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Causal Independence Models for Classification

Causal independence modelling is a well-known method both for reducing the size of probability tables and for explaining the underlying mechanisms in Bayesian networks. In this paper, we propose an application of an extended class of causal independence models, causal independence models based on the symmetric Boolean function, for classification. We present an EM algorithm to learn the paramet...

متن کامل

EM Algorithm for Symmetric Causal Independence Models

Causal independence modelling is a well-known method both for reducing the size of probability tables and for explaining the underlying mechanisms in Bayesian networks. In this paper, we present the EM algorithm to learn the parameters in causal independence models based on the symmetric Boolean function. The developed algorithm enables us to assess the practical usefulness of the symmetric cau...

متن کامل

A generic qualitative characterization of independence of causal influence

Independence of causal influence (ICI) offer a high level starting point for the design of Bayesian networks. However, these models are not as widely applied as they could, as their behavior is often not well-understood. One approach is to employ qualitative probabilistic network theory in order to derive a qualitative characterization of ICI models. In this paper we analyze the qualitative pro...

متن کامل

Imprecise Probability in Graphical Models: Achievements and Challenges

Knowledge-based operations for graphical models in planning p. 3 Some representation and computational issues in social choice p. 15 Nonlinear deterministic relationships in Bayesian networks p. 27 Penniless propagation with mixtures of truncated exponentials p. 39 Approximate factorisation of probability trees p. 51 Abductive inference in Bayesian networks : finding a partition of the explanat...

متن کامل

Noisy Threshold Functions for Modelling Causal Independence in Bayesian Networks∗

Causal independence modelling is a well-known method both for reducing the size of probability tables and for explaining the underlying mechanisms in Bayesian networks. Many Bayesian network models incorporate causal independence assumptions; however, only the noisy OR and noisy AND, two examples of causal independence models, are used in practice. Their underlying assumption that either at lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005